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between twinning-related maxima, since it is these
intensities which are most useful in the determination of
the twinning fraction. A second is that since twin
domains may not all be small or may not be evenly
distributed throughout a specimen, one should ensure
that the volume of the crystal bathed by the X-ray
beam is constant throughout data collection.
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Abstract

The acoustic gyrotropic tensor is a fifth-rank tensor
characterized by d;; ; = —d, ;, with 4, j = 11, 22, 33,
(23, 32), (31, 13), (12 21), /=1, 2, 3, and controls the
acoustical activity in crystals. With the employment of
group theoretical methods, the number of independent
coefficients of this tensor and the character for this
tensor under proper and improper rotation are worked
out. A classification of the acoustically active classes is
given.

Introduction

The phenomenon of acoustical activity refers to the
rotation of the plane of polarization of a transverse
acoustic wave propagating along the acoustic axis.
According to Portigal & Burstein (1968), who predic-
ted this effect, acoustical activity arises due to
first-order spatial dispersion contributions to elastic

0567-7394/80/050760-03$01.00

constants, just as optical activity is the result of
first-order spatial dispersion contributions to the
dielectric  constant. Consequently, the velocity
degeneracy of the linearly polarized transverse acoustic
phonons at k = 0 is lifted at finite k where k is the
phonon wave vector. The two split modes are left and
right circularly polarized along the acoustic axis and
they propagate with different phase velocities. This
phase-velocity difference leads to the rotation of the
plane of polarization.

Direct observation of acoustical activity in a-quartz
by Brillouin scattering techniques has been reported by
Pine (1970). The splitting of the degenerate optical
phonons due to first-order spatial dispersion has also
been observed by Pine & Dresselhaus (1969) in the
low-temperature Raman spectrum of a-quartz.

Portigal & Burstein (1968) have identified the
non-vanishing coefficients of the acoustic gyrotropic
tensor for point groups T, T, and O from symmetry
considerations. We have derived the number of
non-vanishing coefficients of this tensor and identified
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them for all the 32 point groups employing Bhagavan-
tam’s (1966) group-theoretical method.

Acoustic gyrotropic tensor

The effect of first-order spatial dispersion on elastic
constants can be expressed as (Portigal & Burstein,
1968)

Ciiw, k) = C;;(w) + idy; (W) k; + e (W) k1K +

(1

with i, j = 11, 22, 33, (23, 32), (31, 13), (12, 21) and
[ =1, 2, 3. C;(w) is the contracted notation for the
elastic constants C,,.. C,(w) is a symmetric fourth-
rank tensor. The second term on the right-hand side of
(1) is the contribution to elastic constants due to
first-order spatial dispersion and acoustical activity
arises due to this term. d; (w) is a fifth-rank tensor
known as the acoustic gyrotropic tensor. Because of
time-reversal invariance, d;; ;= —d;; ;.

Being a fifth-rank tensor, dy, has 243 coefficients.
Since d;; ; = —d; » dj; , = O for i = j. In this way 45
coefficients become zero. Of those remaining, there are

only 45 independent coefficients (Table 1).

Number of independent coefficients

Acoustical activity is exhibited only by those crystals
that have non-vanishing coefficients d;; ;. To determine
the number of non-vanishing coefficients d;; ,, the
character of the reducible representation formed by the
transformation matrix of the 45 independent tensor
components under a symmetry operation R is derived.
The matrix R represents a proper or improper rotation
and is given by

a,, a, Qa; cosf@ —singd O
R=|a, a,, ayl|=|sinfd cosfd 0 |. (2)
a3 Q3 Ay 0 0 t1

The character of the transformation matrix of the
tensor components is obtained by adding the contri-
butions to the character due to each of the 45
independent coefficients mentioned in Table 1, under a
transformation R. For example, the contribution to the

Table 1. 45 independent coefficients of d; , (I = 1,2, 3)

dlZl d231 dJSI
dl k) d24l d36l
141 dZSI ddSl
151 dZﬁl d461

dl6( d341 561
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character, due to one of the independent coefficients
d, 1231, 1s found from

’ P
di1p31 = 4110119530330, 1193, + 8118,,82305,8,,d,133
+ Q10,304,03,01,d53 1,
_ 4
+ Qy30130,,03,0,d3;,; = T c0s* 0dy153, (3)

to be +cos* 6. The upper and lower signs correspond to
proper and improper rotation respectively. On adding
the contributions from all 45 independent coefficients,
the character y(R) of the reducible representation of
the fifth-rank acoustic gyrotropic tensor becomes

y(R)==%16cos*§+ 24 cos* G+ 8cos?f—2cos O F 1.
4)

The number of independent non-zero coefficients
(Table 2) is determined for each point group using the
well-known formula

1 X
= . heto(R) 1(R), (5)
e=1

where N is the total number of group elements in the
given point group. £, is the number of group elements
in the class, K being the total number of classes in the
group. y;(R) is the character of the totally symmetric
irreducible representation and it is equal to unity for all
the group operations. y(R) is the character of the
reducible representation for the fifth-rank tensor.

The non-vanishing coefficients

Once the number of non-vanishing independent co-
efficients have been determined, the coefficients can be
identified by applying Neumann’s method. Since the
coefficients of the fifth-rank acoustic gyrotropic tensor
are responsible for acoustical activity, the coefficients
should have the symmetry of the point group of the
crystal, if the crystal is to exhibit acoustical activity.
Therefore all the 45 independent coefficients are
subjected to each point-group operation successively.
Only those coefficients will survive that remain in-
variant under all the point-group operations. The
non-zero independent coefficients for each point group
as derived by the above method are given in Table 2.
All the coefficients are zero for centrosymmetric crystal
classes which, therefore, are acoustically inactive.

Conclusion

Only those crystals which belong to non-centro-
symmetric classes can exhibit acoustical activity. The
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Table 2. Non-vanishing coefficients of d;;

No. of
Crystal Point group independent
system International Schonflies coefficients
Triclinic 1 C, 45
Monoclinic m C 22
2 C, 23
Orthorhombic 2mm C,, 11
222 D, 12
Tetragonal 4 C, 11
4 S, 12
4mm Cy S
42m Dy, 6
422 D, 6
Rhombohedral 3 G, I
3m C,, 7
32 D, 8
Hexagonal 6 Cii 6
6 Cs 9
6m2 Dy, 3
6mm C, 4
622 Dy 5
Cubic 23 T 4
43m Ty 2
432 (0] 2

Non-vanishing coefficients

All

aQ,

1210 @122 Aiazs dys3 digrs dres A13ns Ai3zs Ay azgs dagss dasys gy
615 B335 Ass3s Aig1s Aisas Aasy> dysas dasys dses
d123, dy335 draps drazs Aisys disas diess Gasgs Daays Gaars dysys Aasay dagss
dya1s Qyazs 515 a5y s> Dassys dast> Qasas Asers Asea
123> Q133 Gz A5y Ga33s Gaazs asys diaps dysys dygys dser
dy141s dis3s Qi3> Qaars Qasas Dagys Aaars Aisas Baezs Dasss Aagas s
dm = dz:wv dyyy = "dzszv digy = dysys dy5) = s dlsz =—dyy,

163 = —@2635 Q341 = —U3525 Q342 = U3s515 Q453> 461 = Gs620 Ga62 =
—Hs61
dmv digy= —dy33, dyay = dysp d1i2 = —dz.w dm = _dzaz’ d:sz =

_
L

241> A163 = iy, Aagy = iy, dygy = —dysy, digys dygy = —diseas
462 = G561

133 = a3, d1gp = dzsn dis; = dz4zv d;uz =dys), dygy = dssz

163 — dzsaa dyy = dssz’ 363> 4462 = Y361

152 = 241> Q163 = TU263> Q341 = U359 4535 Qg2 =

141 = dasys dis; = dyyy,

141 = —@2525
—Gse1
dyyy = 2dg; = 2d,5, dypy = ~2d 5, = —2d5y, dxss = ‘dzsa’ dm =
dy33s dasz = “dsw dys) = dyazs diyg = —dm = dzw dssz =013 =
_dzan dm = Tl = 5639 G253 = 463 — 1532 Q453> Qagy —

w1 = —2dsg, = 2d,5, = dy5; — d 5, With dy = — zsz_a“d dy =
—dy5p3 A3y — dygy = —2ds, = —2dy5) = d5 — dys, With d,, =
dysyand dyy, = d 5
d,,=-2d

161 = —2d261’ dm = duav dzsx = d342’ d36l = _dm =

dzszv 143 = —ly43 = —dse3, drgy — gy = —2ds5y = —2dy5, = dm -

dys5) With d, g, = d,5) and dyy, = d 5

dm = 2d162 =2dy631 dy63 = —a63; 352 = —dyq> Q363 = dy3, = —dyy5
253 = —daygy = —ds35 Aasys Gygy — Aray = —2dsg, = 2dy5; = dy —

dys, with dy) = —dy5; and dyy = —d 5,

dm = 2d162 =2dy53, d 3y = —2d5) = —2d5), d3y5 = _dm =dy»
360 = 131 = — a3y, A1g3 = —lyey = —dsg3, dys3 = _d«ss = Tl

d163 = —dy3, d133 = dy33, dysy = —dyqys d351 = 3425 Qas30 Qg1 —

diyy = —2dss, = 2dy5, = dy5, — d5; With d,yy = —dy5, and dy =

—dys535 Gagy — dyiy = —2dsgy = —2dy5) = d\5) — dy, With d,, = dyg,
and dyy, = dy5,

122 = —2ly6) = 2035, tygy = —d 33 = dy3y, dyy3= 3 = —dse3
d133 = G233 dssn = Q342 Q242 — 412 =
with d\,, = d,5, and d,, and d,5,
d163 = _dzs;n d:sz =

dysy — dysp With dyyy = —d,, an

562 = 461 = dys; — dzsx

— 3415 dys3y Gy — drgy = _2d561 = 2d462 =
201 = — @152

141 = Q252 = Q363> G152 = 263 = duh digy= dzu = d352‘ d453 =
dsgy = —dygs
dm = dzsz = dss:n d152 = dzsa = dw = dl63 =dyy = d352
—lyy = —

453 = dsg1 = —lagy, A5 = gy = dyyy = —dyg3 = 352

All centro-symmetric crystals 0

non-vanishing coefficients as determined by the general
group-theoretical method agree with those determined
by Portigal & Burstein (1968) for the point groups T,
T, and O. The identification of the non-vanishing
coefficients of the acoustic gyrotropic tensor for all
non-centrosymmetric point groups will be of great help
to experimentalists in high-resolution spectroscopy
studying acoustical activity. It would be interesting to
study the elastic wave propagation along various
directions in acoustically active crystals and such a
study is in progress.
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